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Abstract
Large-scale distributed systems must be built to anticipate
and mitigate a variety of hardware and software failures.
In order to build confidence that fault-tolerant systems are
correctly implemented, Netflix (and similar enterprises) reg-
ularly run failure drills in which faults are deliberately in-
jected in their production system. The combinatorial space
of failure scenarios is too large to explore exhaustively. Ex-
isting failure testing approaches either randomly explore the
space of potential failures randomly or exploit the “hunches”
of domain experts to guide the search. Random strate-
gies waste resources testing “uninteresting” faults, while
programmer-guided approaches are only as good as human
intuition and only scale with human effort.

In this paper, we describe how we adapted and imple-
mented a research prototype called lineage-driven fault in-
jection (LDFI) to automate failure testing at Netflix. Along
the way, we describe the challenges that arose adapting the
LDFI model to the complex and dynamic realities of the Net-
flix architecture. We show how we implemented the adapted
algorithm as a service atop the existing tracing and fault in-
jection infrastructure, and present early results.

Categories and Subject Descriptors D.4.5 Reliability
[Fault Tolerance]

Keywords Fault tolerance, fault injection, data lineage,
verification

1. Introduction
Netflix and similar enterprises operate at a scale at which
failures such as machine crashes and network partitions are
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the rule. In order to provide an “always on” experience to
customers, the software used by Internet companies must
be be written to anticipate and work around a variety of
error conditions, many of which are only present at large
scale. It is difficult to ensure that such fault-tolerant code
is adequately tested, because there are so many ways that a
Internet-scale distributed system can fail.

Chaos Engineering [10], or “experimenting on a dis-
tributed system in order to build confidence in the sys-
tem’s capability to withstand turbulent conditions in pro-
duction,” has is emerging as a discipline to tackle resilience
of these large-scale distributed systems [28, 35]. Engineers
create frameworks that automate failure injection, usually on
live traffic. Nascent workshops such as Chaos Community
Day [2]—in which top Internet companies share experience
designing and implementing fault injection frameworks to
improve the resilience of their systems at scale—underscore
the growth of this trend.

Chaos engineering reflects a cultural shift within the soft-
ware industry away from coordinated design and architec-
ture, monolithic applications, and top-down engineering to-
ward coordination of API boundaries, microservice archi-
tectures, and flattened engineering hierarchies. As the com-
plexity of these loosely coupled architectures increases, re-
liance on automated tooling to provide end-to-end tests for
business-critical assumptions about the system becomes un-
avoidable. Confidence in the end-to-end behavior of the sys-
tem is manufactured by experimenting with worst-case fail-
ure scenarios in the production, scaled-out system.

Building a production fault injection infrastructure is only
the first step towards maintaining fault-tolerant systems. The
space of distinct failure scenarios—combinations of faults
across a distributed system—that such an infrastructure can
test is exponential in the number of potential faults. Exhaus-
tive search is intractable; the fault injection infrastructure
must choose a search strategy to explore this massive space
of possible executions. To the best of our knowledge, all cur-
rent failure testing solutions use one or both of the following
strategies:



1. Random search, in which the fault injection infrastruc-
ture chooses failure scenarios arbitrarily. The principal
advantages of random search are its simplicity and gen-
erality. However, random strategies are unlikely to dis-
cover “deep” failures involving combinations of different
instances and kinds of faults. They also waste resources
and time by exploring failure scenarios that are redun-
dant, or that could be proven to be incapable of triggering
a user-visible error.

2. Programmer-guided search, which leverages the intuition
of domain experts to guide the search through failure sce-
narios. In a microservice architecture like that of Net-
flix, individual services are owned by small engineering
teams. Within each team, component-specific domain ex-
pertise can be exploited to generate local heuristics. This
approach has the advantage that by prioritizing certain
“deep” paths through the space of failures, it can drive the
search into unlikely but severe corner cases for the given
component. Unfortunately, programmer-guided search is
fundamentally unscalable, because every component re-
quires a domain expert to invest their time and encode
their expertise in a search heuristic.

Imagine if we had perfect information that allowed us
to understand exactly how systems like the Netflix backend
produce “good outcomes” (e.g., providing a satisfactory re-
sponse to user requests). We could then transform the very
open-ended question “could a bad thing ever happen?” into
a set of narrower and more targeted questions: “how did this
good thing happen (and what could have gone wrong along
the way)?” Because (by assumption) fault-tolerant systems
employ redundancy in various forms to guard against fail-
ures, the answer to this “how” question will often reveal a va-
riety of alternative computations that can produce the good
outcome. These in turn can help us to prune the space of
fault injection executions that we need to consider. This ap-
proach to automatically driving a fault injection infrastruc-
ture is called lineage-driven fault injection (LDFI) [7].

In this paper, we explain how we implemented LDFI as a
snap-in microservice in the Netflix infrastructure, leveraging
the existing tracing and fault injection services. We describe
the challenges that arose adapting the idealized model of the
research prototype to the rigid and imperfect realities of a
large-scale distributed system, and how we overcame them.

The paper is organized in the following way. Section 2
presents the LDFI approach and its embodiment in the ini-
tial research prototype. Section 3 describes the failure test-
ing infrastructure at Netflix as it existed when we began the
project. Section 4 details the challenges that arose imple-
menting a production version of LDFI; Section 5 takes each
problem in turn and shows how we solved it. We present
some preliminary results in Section 6, and close with a dis-
cussion of related work (Section 7), lessons learned (Sec-
tion 8) and conclusions (Section 9).

2. Lineage-driven fault injection
Lineage-driven fault injection (LDFI) is a technique for
guiding the search through possible fault injection scenar-
ios [7]. The LDFI prototype system (called Molly) takes as
input a distributed program written in an Dedalus [6] (an ex-
ecutable specification language based on Datalog), a correct-
ness specification, program inputs and bounds on execution
length, and simulates the program’s distributed executions
under a variety of faults. Execution of Molly terminates in
one of two cases:

1. A violation of the invariants described in the specification
is found. Molly then returns a trace visualization of the
execution, along with the faults that drove the system into
an invalid state. Programmers can use this visualization
to identify the root cause of the bug.

2. Molly exhausts the execution bounds without discovering
an invariant violation. In this case, the submitted program
is “certified” as free from fault-tolerance bugs given the
execution bounds and program inputs.

The LDFI approach is based on two key insights. The
first is that fault-tolerance is redundancy—a program or sys-
tem is fault-tolerant precisely if it provides enough alterna-
tive ways to obtain an expected outcome that it is resilient to
some pre-defined set of fault conditions. If we had perfect in-
formation about all of the alternative computations a system
provides, we could determine what faults it can tolerate—
or conversely, identify failure scenarios that could prevent it
from succeeding. The second insight is that instead of start-
ing from initial states and exhaustively searching the space
of possible executions, a better strategy for quickly identify-
ing fault-tolerance bugs is to start with successful outcomes
and reason backwards, from effects to causes, in order to
understand whether some combination of faults could have
prevented the outcome.

2.1 Lineage
LDFI uses data lineage [11, 14] to simultaneously exploit
both insights. It begins with a correct outcome, and asks
why the system produced it. This recursive process of asking
why questions (which we illustrate below) yields a lineage
graph that characterizes all of the computations and data
that contributed to the outcome. By doing so, it reveals
the system’s implicit redundancy by capturing the various
alternative computations that are sufficient to produce the
good result.

For example, a correctness property for a distributed stor-
age system might require that “all acknowledged writes are
durably stored.” Hence an execution in which a write is
durably stored is a witness to the correctness property. Work-
ing backwards from this good outcome, we ask why the write
was durable. Since the storage system used replication to
guard against node failure, there are multiple reasons why
the write is durable: namely, because it is stored on some



replica RepA and because it is stored on RepB. We continue
to recursively ask why questions: e.g., the write is stored on
RepA for multiple reasons, because the client made multiple
broadcast attempts. When we finish “unrolling” the explana-
tion of why the write is durable, we end up with a lineage
graph like the one shown in Figure 1.

LDFI must now reason about whether any combination
of faults could prevent that good outcome from occurring.
A naive pass of the lineage graph tells us that the set of
contributing events that could fail is:

E ≡ {RepA,RepB,Bcast1,Bcast2}
Hence the space of possible combinations of faults that

we could explore is 2E—the power set of E, containing 16
elements. However, closer inspection of the graph reveals
that not every element of 2E is interesting. For example, an
execution in which faults are injected in RepA and Bcast1
is uninteresting, because we already know that even under
those faults the system can produce the good outcome via
Bcast2 and RepB.

2.2 Boolean encoding and solving
We can make this reasoning more formal by extracting from
the lineage graph the set of distinct paths from leaves to root;
each path corresponds to an alternative computation that is
sufficient to produce the outcome. Within each path, the fail-
ure of any node invalidates the whole path. Consider the path
from the Client to the root that transits RepA and Bcast1. It
required RepA and Bcast1 to succeed; hence failing either
is sufficient to invalidate the computation. We can encode
the conditions under which this computation could fail as a
disjunction of propositional variables:

(RepA∨Bcast1)

Preventing the good outcome, however, would require us
to find a combination of failures that invalidates all of the al-
ternative computations. We can encode this as a conjunction
of disjunctions of propositional variables (i.e., a formula in
conjunctive normal form):

(RepA∨Bcast1)

∧ (RepA∨Bcast2)

∧ (RepB∨Bcast1)

∧ (RepB∨Bcast2)

The solutions to this boolean formula represent sets of
faults that we should test via fault injection. In particular, we
are interested in the minimal solutions—those that do not
contain other solutions. These are:

{RepA,RepB},
{Bcast1,Bcast2}

The write 
is stable

Stored on 
RepA

Stored on 
RepB

Bcast2

Client Client

Bcast1

Figure 1. A simple lineage graph

2.3 Alternating execution
A fault-tolerant program should, in the presence of faults
such as component failure and message loss, attempt to
achieve its expected outcome via some other means. Hence a
solution to the formula described above does not necessarily
indicate a bug, but rather a hypothesis that must be tested via
fault injection.

By injecting a set of faults corresponding to a solution
to the Boolean formula, the fault injection framework will
produce one of two outcomes:

1. The system fails to produce the expected outcome, in-
dicating a fault-tolerance bug. Execution terminates, and
the user is presented with a visualization of the lineage
graphs.

2. The system succeeds in producing the expected outcome.
This indicates that it has revealed an alternative strategy
for obtaining the outcome. The lineage graph from this
execution should be merged with the current one, and a
new formula should be extracted and solved.

In this way, LDFI alternates between concrete executions
and symbolic solving until either a bug is discovered or the
formula is determined to be unsatisfiable. In the latter case,
LDFI “certifies” the system as free from fault-tolerance bugs
for the given configuration and input.

The basic system architecture of LDFI is depicted in
Figure 2. The system is seeded with a successful outcome.
Recursively asking “why” questions about how the system
obtained that outcome yields a lineage graph. This lineage
graph is encoded into a Boolean formula that is then solved
to generate failure hypotheses, each of which is tested via a
sequence of replays of the initial execution in which faults
corresponding to the hypothesis are injected. This process is
repeated until either a fault tolerance bug is identified or the
system exhausts its hypotheses.
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Figure 2. Overview of LDFI.

3. Failure Testing at Netflix
FIT, “Failure Injection Testing,” is a platform within Netflix
that simplifies fault-injection with a high degree of precision
for what component is failed and which user requests will
be impacted. FIT also allows the propagation of failures
across the Netflix microservice architecture in a consistent
and controlled manner. We were able to use FIT to perform
the fault injection experiments suggested by LDFI without
having to make any modifications to the framework.

In this section, we describe the high-level architecture
of FIT and the details of its API that were relevant to the
implementation of LDFI.

3.1 Failure Scope
The Failure Scope is the potential impact that a failure test,
or experiment, could have. This is measured in terms of
customer impact, from a single customer to all incoming
traffic; the service impact, from a single host or service
to all hosts; or other attributes of the incoming request.
Deliberately causing failures in production is a potentially
risky strategy; the failure scope of an experiment keeps users
of FIT mindful of the external consequences of a failure drill
by understanding its potential “blast radius.”

Simulating failure begins when the FIT service pushes
failure simulation metadata to the proxy server, Zuul, as
shown in Figure 3. Requests matching the “failure scope”
are decorated with metadata describing a particular failure
scenario. The metadata may describe an added delay to a
service call, or remote service call failure. Each “injection
point” with which a request interacts checks the request to
determine if there is a failure for that specific component.
If found, the injection point simulates that failure appropri-
ately.

3.2 Injection Points
The Netflix infrastructure provides developers with several
key “building block” components:

Internet

Zuul

API

RecommendationsSubscriber

FIT Service

Failure Metadata
aysnc update from control plane

Request Context
failure details 

travel with request

Failure Scope
apply to targeted requests

Failing Subscriber

Network Calls

Simulated Failures

Injection Points

Hystrix

Ribbon

Figure 3. A a simulated failure, demonstrating inflections
points where failure can be injected.

1. Hystrix is used to isolate failures and to define fallbacks.

2. Ribbon is used to communicate with remote services.

3. EVCache provides access to cached data stored in Mem-
cached [19].

4. Astyanax provides interfaces for durable storage of data
in Cassandra [26].

Each of these layers defines an inflection point at which
is is possible to inject simulated failures. These layers in-
terface with the FIT context to determine if a given request
should be impacted. The failure behavior is provided to the
appropriate layer, which then individually determines how
to emulate that failure in a realistic fashion: e.g. sleep for a
delay period, return a 500, throw an exception, etc.

3.3 Failure Scenarios
Whether recreating a past outage or proactively testing the
loss of a dependency, the failure testing service needs to
know what could fail. Netflix leverages an internal tracing
system (similar to Dapper [34]) that provides the ability to
trace requests through their interactions with distributed ser-
vices and find all of the injection points along the path. These
are then used to create failure scenarios—sets of injection
points into which faults can be injected in the same execu-
tion. A commonly exercised scenario is the set of “critical



services” representing the minimum set of services required
to stream video.

4. Challenges
LDFI has been shown to be effective at discovering bugs
related to fault-tolerance in low-level, “classic” protocols
(e.g. three-phase commit) as well as modern infrastructure
(e.g. Kafka), using orders of magnitude fewer executions
than random fault injection [7]. This made it an attractive
alternative to the brute-force and engineer-driven methods
used to drive the failure testing infrastructure at Netflix.
Unfortunately, several limitations of the prototype made it
unsuitable for use in its current form.

In this section, we describe the assumptions and require-
ments of the LDFI prototype that were practical barriers to
its deployment. In the subsequent section, we detail how we
overcame these limitations in the production implementa-
tion.

4.1 Language
The Molly prototype requires that distributed systems be im-
plemented in the Dedalus language. The reasons for this re-
striction are largely historical. The research team that de-
veloped LDFI intended for it to provide tool support for
Bloom [5], whose semantics are based on Dedalus. Rule-
based languages such as Dedalus also make it trivial to col-
lect fine-grained data lineage during execution.

While it is not uncommon for verification systems to re-
quire that programs be specified in a custom language [22,
39], this requirement was not acceptable at Netflix. First,
there were simply too many applications to port to Dedalus.
Moreover, because Netflix executes sandboxed code pro-
vided by partners, the source code of applications is some-
times unavailable.

As a consequence, we had to look for another source of
lineage data beyond the program text.

4.2 Lineage: granularity and redundancy
Fortunately, the tracing service described in Section 3.2
records service interactions as call graphs. A call graph is
shown in Figure 4. At a high level (and at a glance), such
a trace resembles a lineage graph. It describes how the API
tier (the root of the graph) responded to a client request;
every service that was required to satisfy that request is rep-
resented as a node in the graph. To a first approximation,
call graphs differ from the rich lineage structures that could
be generated from Dedalus executions principally in their
granularity. That is to say, a call graph characterizes how
a collection of services contributed to a system outcome,
while LDFI’s data lineage characterized how individual data
elements and fine-grained computation steps contributed to
an outcome. Because we were willing to sacrifice some pre-
cision in order to improve the performance of automated
failure testing, it seemed that call graphs could stand in for

API Service

Ratings Service Playlist Service

Playlist EVCache

API

Hystrix_GetRatings Hystrix_GetPlaylist EVCache_Playlist

Ribbon_Ratings

Ratings

Ribbon_Playlist

Playlist

Playlist_Cache

Figure 4. A decorated call graph generated describing the
services that participated in servicing a user request. The
boxes represent Netflix services, while the oval nodes rep-
resent potential fault injection points identified by FIT.

lineage, freeing us from the dependency on Dedalus as an
implementation language.

Recall, however, that LDFI (as described in Section 2)
aggressively pruned the space of executions it needed to
explore using fault injection by considering explicit redun-
dancy, which was revealed in individual graphs like the one
shown in Figure 1. Call graphs such as the one shown in Fig-
ure 4 capture no redundancy. In fact, if we were to apply the
LDFI approach naively to that call graph, we would need to
explore the power set of
{API,Ratings,Playlist,Playlist Cache},
yielding the brute force search strategy described in Sec-
tion 3.

Of course, a site such as Netflix cannot provide high
availability and low latency for user requests without uti-
lizing redundancy in a variety of forms, including caching,
active replication, and automatic as well as operator-assisted
fail-over. These forms of implicit redundancy are not explic-
itly revealed in the call graph structure—hence our challenge
was to identify and reify them into our model.

4.3 Identifying successful outcomes
As we discussed in Section 2, LDFI works backwards from
a successful system outcome in order to explore the space
of faults that could have prevented it. In the prototype, a
successful outcome was merely a data item; a record in a
table.

The aforementioned heterogeneity of the applications
running in the Netflix ecosystem made it challenging to iden-
tify an appropriately general measure of success for individ-
ual service interactions. Because Netflix presents a REST
API to external clients, we explored the possibility of using
the HTTP response code as an indication of the success of
the overall interaction. Unfortunately, different applications
use the return code inconsistently. It was not uncommon for
API calls that produce a client-visible error to nevertheless
return a successful status code (“200 OK”).



4.4 Replayability
As Figure 1 indicates, LDFI requires individual interactions
with a distributed system to be replayable. This is unavoid-
able; not all hypotheses generated by the solver will produce
a user visible error, so to ensure that bug identification is
sound each hypothesis must be tested via fault injection.

Netflix does not have a production-scale testing environ-
ment in which to carry out speculative replay of service in-
teractions. As we described in Section 3, all failure testing is
carried out in production using real user traffic.

We explored the possibility of recording user-generated
interactions and their traces, and later replaying them to test
different failure hypotheses directly in the production envi-
ronment. Unfortunately, the dynamic nature of the microser-
vice architecture at Netflix made this approach impossible.
First, the internal state of individual services is constantly
changing as a consequence of both asynchronous updates
and user interactions. Worse still, due to software releases
the versions of various services can change at any time—
there is no notion of a “consistent cut” of system-wide soft-
ware versions, as each microservice evolves independently.
Finally, because user interactions with the services are not
necessarily idempotent, replay itself may effect the internal
state of services.

5. Solutions
In this section we address each of the challenges enumerated
in Section 4 in turn. While we sought to preserve the spirit
and simplicity of the LDFI approach as much as possible,
we had limited flexibility with respect to changing details of
the Netflix production infrastructure. As a consequence, we
often found ourselves adapting the idealized model of LDFI
to the “ugly” realities of the existing system, rather than
trying to “boil the ocean” by making the system more closely
resemble the model. Luckily, with a bit of creativity and a
good deal of flexibility we succeeded in overcoming each of
the challenges. We hope that the solutions we describe will
prove useful for future adaptations of LDFI to production
infrastructure.

5.1 Measuring Success
What does “success” mean in real life? In a production
system, it has a real and specific meaning: did the system
work correctly for the customer? For the typical customer
interaction with Netflix, this boils down to ensuring that the
user has the ability to browse the catalog, view video details,
and stream the video. These interactions occur both within
web browsers and on devices (such as the Xbox, Playstation,
etc). Netflix captures and report back metrics about these
(and other) key interactions in order to gain insight into the
customer experience. From these device-reported metrics we
are able to determine whether the customer saw an error or
had a successful interaction.

We tap into a stream of these device-reported metrics in
order to capture the error information related to customer re-
quests that were decorated with failure. We either store “suc-
cess”, or metadata about the error (which is useful for later
debugging). For each experiment run, we impact several re-
quests so that we can filter out potential false positives. We
only mark an experiment as finding a bug if greater than 75
(percent) of the requests result in a failure.

Lastly, we encountered some scenarios in which no data
would be captured from the device-reported metrics for a
given experiment. After some debugging, we found that
certain injected failures affected not only the request itself,
but the mechanism for reporting errors as well. Therefore
we treat a lack of device reported metrics as a failure. This
may not be a true failure (i.e. if someone pushes bad code
which prevents capturing device reported metrics, etc), but
we would rather investigate it as if it were a real failure than
ignore it.

5.2 Replay
The LDFI methodology requires that requests be replayed
in order to test different failure hypotheses, but the Netflix
infrastructure provided no practical replay capacity. To cir-
cumvent this obstacle, we simulate replay by treating all user
requests that cause the same back-end behavior as if they
were replays of a single, canonical request. This required us
to define a finite set of equivalence classes representing dis-
tinct interactions with the services provided by Netflix, and,
for each user request, to predict the class to which it belongs.
This section describes how we formulated and solved these
problems.

5.2.1 Request Classes
All user requests are unique, but intuitively there are only a
finite set of distinct service interactions that a request could
stimulate. Before we could tackle the problem of predicting
class membership for user requests, we had to enumerate
this set of abstract “interactions.” More formally, user traffic
provides an infinite set of requests R, and Netflix’s tracing
infrastructure provides a function trace : R→ T , where T
is a (possibly infinite) set of concrete traces. We needed to
define an equivalence relation ∼ that gives rise to a set of
request classes

C ≡ { {x ∈ T |x∼ t} |t ∈ T} (3)

We want to choose ∼ in such a way that the cardinality of C
is finite and manageable, but large enough that it captures the
variety of interactions that are possible for users of the sys-
tem. Critically, we had to ensure that for any two requests r
and r′, trace(r)∼ trace(r′) if and only if any combination
of failures that prevents r from returning a valid response
also prevents r′. Informally, two requests are similar if the
interactions they cause are sensitive to the same faults.

As we discussed in Section 4.2, call graphs can be eas-
ily generated from system traces. Call graphs provide a use-



ful abstraction over the “interactions” that occur as a conse-
quence of user requests: they record which services (drawn
from a finite set S) participated in providing a response
to the user. The structure of a call graph also records de-
pendency information (i.e., which services were clients and
which were servers in directed acyclic graph of API calls)
that wasn’t required for our purposes. As a trivial example,
the services {A,B,C} could participate in a variety of dif-
ferent graphs, but the distinctions between these graphs are
uninteresting because any faults that affect A,B or C could
affect the user-visible response generated by any of the in-
teractions. We write callgraph(r) to denote the call graph
produced by request r in a fault-free execution, which we
can ascertain directly from system traces because they record
both requests and the generated call graphs. Given a call
graph g = (V,E), we write nodes(g) to denote the set of
graph nodes V ⊆ S.

Define a function

interaction≡ nodes◦ callgraph◦ trace (4)

Note that interaction : R→ 2S—that is, interaction is
a function from requests to sets of services. Then we define
∼ as

∀r,r′ ∈ R r ∼ r′ ⇐⇒
interaction(r) = interaction(r′) (5)

Intuitively, two requests belong in the same class if they
“light up” the same set of services. Note that we assumed
trace to be a deterministic function. This is not always
the case in practice: call graphs can record a number of
non-deterministic effects such as cache misses. We describe
below how we work around this difficulty.

5.2.2 Learning Mappings
Because the function trace is effectively implemented by
the Netflix production infrastructure, it is not available at
the time a request arrives at Zuul. Hence as a surrogate
for interaction (which depends upon trace) we must
learn a function f : R→ 2S—that is, a function which, given
information known at the time a user request is admitted
into the system, predicts the unique set of services that will
participate in serving the request. Given a request r ∈ R,
we write attrs(r) to denote its set of attributes, such as
its URI, device type and query string parameters. Due to
the possible run-time nondeterminism of trace described
above, we model f as a partial function: it produces a defined
value only when the classifier predicts a request class with
high confidence.

To learn f , we pose a supervised learning problem. Our
training input is drawn from the set of production traces,
each entry of which associates a request r ∈ R with a trace
t ∈ T (essentially providing information about how the in-
frastructure implements trace via input/output examples).
The features are drawn from request attributes: F ⊆ attrs(r).

We explored two formulations of the classification prob-
lem. First, we canonicalized elements of 2S by sorting them
lexicographically and combining them into a large string,
and posing a single-label classification problem to predict
that string for each request. We also investigated posing a
multi-label classification problem [36], in which each ele-
ment e ∈ 2S is treated as a label and the classifier attempts
to predict sets of labels for each input. In the end, we used
the single-label classifier for the first release of the LDFI
service, but are continuing to investigate the multi-label for-
mulation.

5.3 Lineage
By definition, a fault tolerant system provides multiple alter-
native computations that can achieve its expected outcomes—
it is precisely by doing so that it can mask faults that occur
during execution. LDFI uses data lineage to reason explic-
itly about the redundancy provided by a system, in order
to aggressively prune the space of executions that it must
consider. However, as we saw in Section 4.2, the tracing
infrastructure used by Netflix does not directly expose this
redundancy in call graphs. Intuitively, however, we know
that redundancy exists in the Netflix backend; the challenge
was to make it explicit.

Our solution was to have LDFI learn about the various
alternative computations provided by the site for a particular
class of user requests over time. Recall that Section 5.2
described a mechanism for simulating the replay of user-
generated interactions by grouping requests into equivalence
classes and treating all requests that map into a particular
class as though they are replays of a single user interaction.
It occurred to us that we could take advantage of this replay
mechanism to incrementally build a model of the variety of
alternative ways that a particular request class can provide a
satisfactory response.

For example, Figure 4 (as we discussed in Section 4.2)
reveals no redundancy: it simply describes the interaction
between the services that were used to generate a response to
a particular user request that mapped into that class. Based
on an analysis of this callgraph alone, it might appear that
if the node hosting the ratings service were to crash, the
entire request might fail. A Netflix site reliability engineer,
on the other hand, might know that in such an event, the
API service would fail over to a RatingsFallback service
that provides (possibly state) ratings information in order to
allow the client response to be generated with acceptable
defaults. This alternative computation is missing from the
graph, for an obvious reason: the fallback code was not
executed servicing the original user request.

However, if our automated failure testing system were to
generate a hypothesis that failing RatingsService could
cause a user-visible error, and then tested that hypothesis
via fault injection, in a subsequent “replay” (i.e., the next
user request that maps to the same class) the system would
succeed and generate a slight different request graph (e.g.,



one in which the RatingsService node was replaced by a
RatingsFallback node). Collectively, these graphs explic-
itly capture the redundancy in this system, which (continuing
this process) will be incrementally revealed over time.

By maintaining long-lived models of these alternative
computations provided by each request class, we were able
to capture both the dependencies within individual computa-
tions and the redundancy across them. We used this structure
to stand in for the lineage graph described in Section 2.

6. Results
In this section, we begin by briefly describing the LDFI
service that we implemented at Netflix. We then present a
case study in which we describe details of how the LDFI
service explored a particular request class (called App Boot),
and the fault tolerance bugs it identified.

6.1 Implementation
Having addressed the challenges described in Section 4, we
implemented LDFI as a service that interposes between the
tracing service and FIT.

For each request class (as described in Section 5.2), the
LDFI service maintains a model of the alternative computa-
tions that are sufficient to produce a satisfactory response for
requests that fall within the class. This model—the substitute
for fine-grained lineage that we presented in Section 5.3—
is enriched over time as described below; at any given time,
the model can be thought of as the conjunction of the various
call graphs that were produced by experimenting with differ-
ent fault scenarios. Given such a model, LDFI can produce a
set of hypotheses by representing the known alternatives as
a Boolean formula and solving, as described in Section 2.

The LDFI service is driven by a daemon that periodically
spawns three types of jobs:

1. Training: the service collects production traces from the
tracing infrastructure and uses them to build a classifier
(as described in Section 5.2) that determines, given a user
request, to which request class it belongs. We found that
the most predictive features include service URI, device
type, and a variety of query string parameters including
parameters passed to the Falcor [16] data platform.

2. Model enrichment: the service also uses production
traces generated by experiments (fault injection exercises
that test prior hypotheses produced by LDFI) to update
its internal model of alternatives. Intuitively, if an exper-
iment failed to produce a user-visible error, then the call
graph generated by that execution is evidence of an alter-
native computation not yet represented in the model, so it
must be added. Doing so will effectively prune the space
of future hypotheses.

3. Experiments: finally, the service occasionally “installs” a
new set of experiments on Zuul. This requires providing
Zuul with an up-to-date classifier and the current set of

failure hypotheses for each active request class. Zuul will
then (for a small fraction of user requests) consult the
classifier and appropriately decorate user requests with
fault metadata.

At any time, administrators may query the LDFI service
to obtain information about user-visible failures that have
been uncovered, the current state of lineage models for the
active request classes, and the current failure hypotheses that
will be tested in the next experiment.

6.2 Case study: App Boot

Hypothesis:

EC_MAP_LT

APIPROXY

API

EC_AB EC_YELLOW2 ABCLOUD YELLOW2 EC_SUB

Figure 5. A simplified example of a failure-free run of App
Boot. Most of the data required to satisfy the request is ob-
tained from the EVCache tier (nodes with the prefix “EC ”).
A failure hypothesis (crash EC MAP LT) generated by LDFI
after processing the graph is highlighted.

In this section we focus on one of the most critical inter-
actions users have with the Netflix site: a particular request
class that Netflix developers colloquially refer to as “App
Boot.” This interaction loads the metadata needed to run the
Netflix application and load the initial list of videos for a
member. App Boot represents a moment of truth that, as a
company, we want to win by providing a reliable experience
from the very start.

It is also a very complex request, touching dozens of
internal services and hundreds of potential failure points. A
complete (but too dense to read) call graph for App Boot
is shown in Figure 6. Brute force exploration of this space
would require roughly 2100 experiments.

Figure 5 shows a simplified call graph produced by a
failure-free initial run of the App Boot request class. Note
that in order to make the graphs readable, we display them
at a coarser grain than the example graph we showed in
Figure 4. In Figures 5 and 7, services (boxes in Figure 4)
are shown as graph nodes (ovals), while individual fault
injection points (ovals in Figure 4) are not shown.

Figure 5 also highlights a failure hypothesis generated
by LDFI after processing the graph: causing a fault in the
EC MAP LT service could prevent the App Boot interaction
from providing a useful response to the user. At some future
time, the LDFI service propagated the details necessary to
test this hypothesis via FIT. Some time after that, a user re-
quest arrived that the classifier mapped into the App Boot
request class. Zuul decorated the user request with the ap-
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Figure 6. The App Boot call graph.

Consequence

MAPLOLOMO

GROUP_SERVICE EC_CHUNK_VH EC_TRACKER GPS_FRONTEND

EC_MH2_GPS_PAGE_BASIS

APIPROXY

API

EC_AB EC_YELLOW2 EC_SUB YELLOW2

Figure 7. A simplified trace for the request class shown
in Figure 5, after injecting a crash failure in the EVCache

Map service (EC MAP LT cache service). In this execution,
the LOLOMO (List-of-lists-of movies) must be compiled
via a deeper subgraph involving calls to several services (e.g.
GROUP SERVICE, GPS SERVICE).

propriate failure scenario metadata, triggering the appropri-
ate downstream faults.

However, that experiment failed to produce a user-visible
error. Instead, it logged a new call graph, shown in Figure 7.
Note first that the EC MAP LT service does not appear as a
node in this call graph, because the service was crashed by
the FIT infrastructure. In its place, however, a new subgraph
has “grown” (shown in a box). The EC MAP LT cache service
materializes the results from a collection of service calls
that are required to compile the “LOLOMO” (or list-of-
lists-of-movies) that is presented to users after logging in to
the Netflix service. Because the cache was unavailable, the
API tier called the MAPLOLOMO service as a fallback. It, in
turn, called the services required to compile the LOLOMO,
including the GROUP SERVICE, GPS SERVICE and several
lower-level caches.

The EC MAP LT service and the subgraph that replaced it
in Figure 7 represent alternative computations provided by
the Netflix backend that are individually sufficient to pro-
duce a satisfactory user response for the App Boot request
class. Armed with this additional knowledge about fallbacks,
LDFI will never again explore scenarios in which faults are
injected in EC MAP LT without also injecting faults in some
node in the new subgraph (e.g. GPS FRONTEND). Every time
the service spends resources and time running a failure ex-

periment, the results of the experiment either uncover a bug
or prune the space of future experiments.

LDFI covered the space of failure scenarios for App Boot
after running just under 200 experiments—a miniscule sub-
set of the 2100 potential failure scenarios into which random
strategy would “stab.” Along the way, it discovered 11 new
critical failures that could prevent users from streaming con-
tent, several of which involved “deep” failure scenarios in-
volving a combination of service fault events.

7. Related Work
Fault injection is a relatively mature subject in the depend-
ability literature [1, 15, 21, 23]. “Failure testing as a ser-
vice” was first proposed by Gunawi et al [20]. More recently,
large-scale infrastructures supporting fault injection in pro-
duction systems have emerged [10, 18, 28, 35]. In this work,
we took advantage of an existing fault injection service and
focused on the problem of intelligently searching the combi-
natorial space of possible failures. To the best of our knowl-
edge, our system is the first large-scale failure testing service
to automate the search using techniques more sophisticated
than simple random fault injection.

Formal methods [17, 22, 24, 29, 30, 38, 39] have always
been available to programmers, but most require significant
expertise in a modeling or annotation language. Despite the
difficulty of mastering these tools, large scale Internet com-
panies have reported some recent success using formal meth-
ods [31]. In contrast to most of these approaches, our project
focused on finding bugs on unmodified (and indeed already
deployed) systems. Rather than exhaustively verifying the
behavior of individual components, as would a strategy such
model checking, FIT and LDFI test end-to-end properties of
complete systems.

LDFI uses data lineage to reason about the underlying
redundancy provided by a fault tolerant distributed system.
Lineage [12, 25, 27, 33, 37] is a mature research area in
the data management systems community. While the LDFI
prototype uses classic lineage collection and analysis tech-
niques, as we described in Section 4.2 fine-grained data lin-
eage was not available at Netflix. Our approximation—the



conjunction of the history of call graphs for a given request
class—resembles a (positive) lineage graph.

8. Lessons and Future Work
Our goal in this paper was to share our experience adapt-
ing LDFI from a research prototype into a production ser-
vice. Hence the design and implementation efforts described
in this paper are in some cases specific to the target archi-
tecture at Netflix. Nevertheless, we strongly believe that this
approach can be re-applied with a reasonable amount of inte-
gration effort. In this section, we sketch the work that would
be required to deploy a “bolt-on” LDFI service at an enter-
prise satisfying some basic infrastructure requirements. We
also outline some directions for future research and applied
work.

A minimal requirement for LDFI is a fault injection
framework. In addition to Netflix [10], Linkedin [35], Mi-
crosoft [28], Uber [32], Yahoo [3] and other major Internet
companies have developed large-scale fault injection infras-
tructures, while smaller enterprises are beginning to follow
their example [9]. Some of these frameworks are already
available to the general public; others will likely become
available soon, either as open source or commercial soft-
ware.

A fine-grained fault injection service like FIT that sim-
ulates faults at the level of individual requests (as opposed
to at the level of the host, process, etc.) was required in our
case to control the “blast radius” of our experiments. Be-
cause we performed all experiments on production traffic, it
could be difficult to predict and control the effect of coarse-
grained faults on other processes. If production fault injec-
tion is not necessary or desirable (for example, if a testing
or staging area is available for experiments), request-level
tracing (while powerful) is no longer a strict requirement.

It is important to note that LDFI’s ability to leverage
a fault injection system will depend on the quality of its
input data. It will not be possible to take advantage of a
rich experimentation framework if only coarse-grained trace
data is available. In light of this dependency, it may be
worthwhile to consider co-evolving future tracing and fault
injection infrastructures; for example, by using software-
defined networking as a common substrate for monitoring
and fault injection, or by using the annotation propagation
capabilities of OpenTracing [4] to decorate requests with
failure metadata, much as Zuul did in our implementation.

Call graph tracing systems similar to the one we used at
Netflix are already in use at Google [34], Twitter [8], Face-
book [13] and a growing list of other sites. Tracing sys-
tems are increasingly following the emerging OpenTracing
API [4], allowing systems like LDFI to avoid lock-in and
achieve better reuse. In this paper, we showed how rich mod-
els of system redundancy could be built from this relatively
“shallow” source of lineage by accumulating and merging
call graphs over long timescales. There is always room for

improvement here—between the two extremes of the record-
level data lineage used by the Molly prototype and call graph
tracing lie a broad space of interesting lineage representa-
tions. Higher quality lineage can mean more effective prun-
ing of the space of executions, fewer false positives and bet-
ter utilization of site resources. We are actively researching
ways of improving trace collection infrastructures without
incurring unacceptable overheads.

While the idea of grouping requests together into equiv-
alence classes seems like a useful abstraction for any de-
ployment, the work described in Section 5.2 was yet another
example of accommodations for the local requirement that
fault injection be performed on the production system. When
staging areas are available to perform replays of site interac-
tions, the problem becomes much easier. In this paper, we
showed that it is possible to simulate replay even in infras-
tructures that do not support the capability directly.

At a glance, it might appear that a production-scale stag-
ing environment can sidestep many of the integration diffi-
culties described in this report. It is our opinion, however,
that production failure testing may be the right choice even
when a high-quality staging area is available. As we de-
scribed in Section 5.1, performing our tests in production
allowed us to measure success as perceived by real system
users in a way that would have been difficult or impossi-
ble using synthetic inputs or replay of old interactions. The
tradeoff between quality of success measurements and im-
pact on production systems and customers is nuanced; the
right choice is likely to differ from company to company.

When the lineage representation is coarse-grained, as it
was at Netflix, the space of solutions to the constructed
boolean formulae can themselves be very large. While all
of the solutions correspond to potentially interesting failure
scenarios, in practice we have limited resources and time
at our disposal. At any given point, we would like to use
the injection infrastructure to test the most likely failure
scenario that our solver has identified as one that could cause
a user-visible error. We are actively researching efficient
transformations of the decision problem (i.e., is there a set
of faults that could invalidate this successful outcome?) into
an optimization problem (i.e., what is the most likely such
set of faults?) that takes advantage of historic and vendor-
supplied mean time between failures statistics for hardware,
topology information, and software version metadata.

9. Conclusions
The results presented in Section 6 are preliminary, as LDFI
has been running in production at Netflix for a short time.
As it continues to run on a fraction of our production user
traffic, we expect that it will continue to uncover both “fresh”
bugs in new software releases and existing deep bugs lurking
within new request classes that we have not yet explored.
We also anticipate that as the Chaos Engineering discipline



proliferates among Internet companies, approaches such as
LDFI will become increasingly relevant.

As we saw, the challenges in applying the research to a
“real-world” system largely arose from an impedance mis-
match between the idealized model of reality of the research
prototype and the rigid and often messy realities of produc-
tion systems. It was impractical to modify the existing sys-
tems to more closely resemble the model—in addition to the
bare complexity of such a task, there are too many live pro-
cesses dependent on them to make such changes safe. At the
same time, it was undesirable to complicate the models to
make them resemble reality—after all, the strength of mod-
els is in their simplicity and abstraction.

In the end, the solutions that we devised all involved a
principled mapping between concrete systems and structures
and the idealized model. We were able to preserve the funda-
mental facets of the LDFI approach—successful outcomes,
lineage and replay—by approximating them as “views” over
existing services and data structures.

We hope that lessons have emerged from our experiences
on two levels. First, we showed how to implement LDFI as
a microservice that “snaps in” to existing tracing and fault
injection infrastructures. We hope that this experience can be
a guide for future integrations efforts. Second, and perhaps
more importantly, we share important evidence that it is
possible (and indeed, profitable!) to push distributed system
research prototypes into production usage.
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